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A robust projection plane selection strategy for UAV image
stitching
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Engineering, Wuhan University, Wuhan, P.R. China; bHubei Province in Western Hubei Geological Mapping
Team, Yichang, P.R. China

ABSTRACT
Unmanned Aerial Vehicles (UAVs) are the most popular way to
collect ground data today, thanks to their low cost and matchless
convenience. However, UAVs are prone to unstable flight poses
because they are so light in weight, which has resulted in a new
challenge for UAV image stitching. In this paper, we propose a
robust approach to stitch UAV images captured from approxi-
mately planar scenes without pose parameters assistance. The
key idea of the proposed framework lies in an effective projection
plane selection strategy, which is capable of resisting the perspec-
tive distortion from existing pose-perturbed images. To select a
reasonable reference image as the projection plane, we first divide
all the images into two groups (stable group and unstable group)
according to their registration error under the affine model. Then,
a specifically designed approach is used to define a weighted
topological graph, which guarantees that the reference image is
selected from the stable group while maintaining a global mini-
mum accumulated registration error. Based on our cost topologi-
cal graph, each unstable group image is locally attached to a
stable group image via a homography. Finally, alignment para-
meters of all the stable group images are solved using affine
model, after which global optimization is performed on the
model of both groups. Comparing our results to those of the
conventional approaches indicates that our proposed approach
produced superior results in several challenging experiments
involving both qualitative and quantitative evaluation.
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1. Introduction

Owing to the rapid development of the procurement process of optical data from areas
beyond human reach, there is a high demand from different science fields to stitch
sequential images together to create a large mosaicked image. Image mosaicking is a
procedure that merges two or more images covering overlapping areas into a single
composite image as seamless as possible in both geometry and colour tone. The first
step in image mosaicking is image stitching which accurately aligns images into a
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unified coordinate system and directly influences the quality of mosaicking (Zagrouba,
Barhoumi, and Amri 2009b; Chen et al. 2014b; Zitova and Flusser 2003b).

The first step in image stitching is to select an appropriate alignment model.
Szeliski (2006) proposed different models to map pixel coordinates from one image
to another, such as 2D plane transformation models, 3D models, cylindrical models,
and spherical models, which were then used to construct a complete image align-
ment system. A homography is a strict alignment model to describe the relationship
between two images captured from a 3D plane or from a fixed centre of projection
(Szeliski and Shum 1997b; Kang et al. 2014b). For images with parallax, many stitching
methods have been proposed in recent years (Zhang and Liu 2014b; Lin et al. 2015b).
Chang, Sato, and Chuang (2014b) utilized a novel parametric warp which smoothly
extrapolates the projective transformations of the overlapping regions into the non-
overlapping regions, and the resultant warp gradually changes from projective to
similar across the image. In order to deal with stitching images with parallax,
Zaragoza et al. (2013b) used a local weighting method to create a local homography
for each pixel or grid, which was highly accurate and could significantly reduce ghost
effects. However, in order to fit in different complex environments, all of these
existing methods mostly utilized local constraints to solve local models that were
not suitable for stitching multiple images and achieved more degrees of freedom
(DoFs) than global models, which can make the model’s parameters more difficult to
solve.

Unmanned Aerial Vehicle (UAV) image stitching mainly addresses stitching planar
scenes for the purpose of recovering the homographies of image pairs (Xu et al. 2016b).
Although many transformation models were proposed in the past decade (Chen, Sun,
and Wang 2010b), their performances, considering both accurate alignment and global
consistency, still need improvements.

Most approaches to image alignment are feature-based (Mou et al. 2013b). The basic
procedure is first to extract the features, including as many point, line, or edge features
as possible. Then, the corresponding relationships are established between images of
interest based on the extracted features. Finally, the transformation models are solved
through optimization methods (Elibol, Gracias, and Gracias 2012b). Point features are
most widely used because of their stability and universality. To improve the efficiency of
their algorithm and obtain better alignment results, Li et al. (2015b) used the matches of
sparse points and lines as constraints and proposed a dual-feature transformation model
for image alignment to ensure the integrity of the line structures in the final mosaicked
image. With an appropriate mathematical transformation model and matching features,
many optimization algorithms also have been proposed to improve the precision of the
stitching and to obtain global optimal results (Konolige and Garage 2010b). The bundle
adjustment approach is often used as a typical global optimization method, which finds
an optimal solution minimizing the total reprojection error (Liu et al. 2009b; Triggs,
Zisserman, and Szeliski 2003b; Brown and Lowe 2007b). Xing, Wang, and Yaming's
(2010b) proposed algorithm first applied the extended kalman filter onto the local
area to obtain a good initial solution for global optimization and then refined all the
parameters globally. Some methods utilized topological structure information of images
to achieve global registration (Kang, Cohen, and Medioni 2000b; Marzotto, Fusiello, and
Murino 2004b). To avoid the down-scaling effect on the image quality, Elibol et al.
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(Elibol 2008) proposed optimizing the point positions in a mosaic frame and optimizing
an alignment model in an alternate iteration scheme.

The above-mentioned approaches all concentrated on the optimization strategy or
the registration scheme, seeking alignment with least registration errors, which usually
produces a satisfying stitching result when there are several or dozens of images.
However, because of the pseudo-planarity of observed scenes, many alignment meth-
ods based on minimizing registration errors would result in a significant accumulation of
perspective distortions for hundreds of images acquired from wide-range regions. To
overcome this problem, the geo-referenced satellite images of a whole region can be
selected as the reference images (Lin and Medioni 2007b; Se et al. 2009b). Other
approaches to avoid accumulated errors used extra sensors, such as GPS and IMU, to
directly obtain camera poses for mosaicking (Yahyanejad et al. 2010b). In practice, pose
parameters are not always available; therefore, optimizing the alignment models for
resisting perspective distortions has been a popular research topic recently (Wang et al.
2016b; Xu et al. 2016b). Koo, Kim, and Cho (2009b) presented a new mathematical
criterion to select an optimal warping function which minimizes the total number of
perspective distortions of all the images. Multichannel bending (Burt and Adelson 1983)
and stitching line cutting (Kwatra et al. 2003b) can alleviate this problem, but artefacts
may still exist when images have large perspective distortions. Gao, Kim, and Brown
(2011b) used two homographies to deal with two projection planes in an observed
scene, through which better stitching result can be obtained. Many scholars used space
variant distortion algorithms to address images with small perspective distortions (Lin
et al. 2011b). Caballero et al. (2007b) proposed a hierarchical homography computation
model to deal with quasi-planar scenes, where accumulated drifts can be compensated
for and propagated to the rest of the mosaic when a loop is present in the sequence of
images. To allow the transition between the alignment models, Xia et al. (2015b)
proposed to initially align images by a robust affine model, followed by model refine-
ment under an anti-perspective constraint. In this way, both the global consistency and
the alignment precision could be achieved at an optimal balance. However, the refer-
ence image was fixed as the first image, which limited its application to large-scale
scenes and brought more serious challenges to maintaining a global minimum accu-
mulated error.

As for optimal reference image selection, Richard et al. (2006) stated that a reason-
able selection is the most geometrical central image. This supposition is obvious
because a central image usually has the shortest distance to all other images on
average. However, the authors did not provide a way to find such an image. To solve
this problem, Choe et al. (2006b) used the Floyd–Warshall’s all-pairs shortest path
algorithm to select a reference image with a minimal total registration error. To find
the optimal reference image which minimizes the total propagated error, Xia et al.
(2017b) proposed to organize all the images as a weighted topological graph and
construct a symmetric cost matrix of the all-pairs shortest path to find a node with
the least total weight of the shortest paths to all other nodes. However, the weights
of the edges in the topological graph were set only according to the number of
matched features and registration errors while the magnitude of the images’ distor-
tions was not considered. Huge distorted images usually should not be selected as
reference images.
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In this paper, we concentrate on projection plane selection for UAV images stitching
captured from approximate planar scenes without pose parameters assistance. Because
images are captured from approximate planar scenes and there are large pose-per-
turbed images at the same time, homography cannot describe the relationship between
images perfectly and there are large unavoidable perspective distortion in stitching
results. To address this problem, we propose an effective projection plane selection
strategy, which can resist perspective distortion from possible existing pose-perturbed
images. There are two general steps for the proposed approach: (1) projection plane
selection and (2) global consistent alignment, as shown in Figure 1. First, the images are
divided into two groups, the stable group and the unstable group, according to their
registration errors under the affine model. Second, a specially designed approach is used
to define a weighted topological graph, which guarantees that the reference image will
be selected from the stable group while maintaining a global minimum accumulated
registration error, and a spanning tree is built by the classical Floyd–Warshall algorithm,
which determines the aligning order of the images in the following alignment. Third, a
bundling strategy is creatively employed for the initial alignment, in which each
unstable-group image is locally attached to a stable-group image via a homography,
and the alignment parameters of all the stable-group images are solved with affine
models. Finally, a global optimization is performed on the models of both groups to
improve the alignment precision and avoid perspective distortion. Our approach is
tested in several groups of experiments on both synthetic and challenging real datasets,
which clearly illustrate the superiority of our approach.

Figure 1. The flowchart of our proposed approach for mosaicking UAV images captured from
approximate planar scenes. The blue and red solid circles in the topological graphs denote the
images in the stable group and the unstable group, respectively, and the large solid circles indicate
the reference image.
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The remainder of this paper is organized as follows. In Section 2, a robust projection
plane selection scheme is presented, and the globally consistent alignment strategy is
detailed. In Section 3, the qualitative and quantitative experimental results are pre-
sented. Finally, Section 4 discusses our conclusions and our suggestions for future
research directions.

2. Our approach

2.1. Projection plane selection

The reference image that is generally treated as the projection plane of image mosaick-
ing can be selected at the geometrical centre or through other simple methods.
However, other approaches do not take the perspective distortion of images into
consideration, which may result in considerable distortion of the mosaicked image. To
select a reasonable reference image as the projection plane, we divide all the images
into two groups: the stable group (e.g. the light blue rectangles as shown in Figure 2)
and the unstable group (e.g. the red rectangles as shown in Figure 2), and search for an
optimal reference image from the stable group, as demonstrated in Figure 2.

2.1.1. Image classification
The perspective distortion of images cannot be directly expressed based only on the
image itself while the pose parameters are invalid, and it is also difficult to distinguish

Figure 2. An illustration of the robust projection plane selection strategy. The light blue rectangles
represent the stable-group images during image classification, and the red rectangles represent the
unstable-group images. The whole brown rectangle represents the projection plane we selected and
the whole white rectangle represents the real plane of the observed scene.
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the magnitude of the perspective distortion of images. When all the images are warped
onto a reference plane using affine model Ai and there are a few images belonging to
the image group of large perspective distortion, there should be larger registration
errors between those unstable-group images and their surrounding stable-group
images, but the registration errors between the images of small perspective distortion
and their adjacent images are mostly very small. When the registration errors between
each image and all the other images in a group are small enough, all the images in the
group have similar perspective distortion. Based on these observations, we adopt a
projection detection strategy to divide all the images into two groups: stable group
(represented by S) and unstable group (represented by U ), which includes three steps:
error calculation, seed selection, and region growing.

The main idea of our strategy is to first divide all the images into small groups with
similar perspective distortion and then merge these small groups through region grow-
ing. First, we warp all images onto reference image of geometrical centre via affine
model and calculate registration error ei;j between image Ii and adjacent images Ij,
average registration error �ei with all the adjacent images, average registration error ê,
and mean square error σ for all the images. Second, the seed selection aims to divide all
the images into small seed groups with similar perspective distortion or seed points
having large perspective distortion differences with adjacent images. Considering
that the perspective distortion of single image is hard to distinguish, we adopt a better
strategy in which three images are chosen as a group in seed selection. In order to
efficiently obtain image groups that have similar perspective distortion, two conditions
are designed to choose the seed groups consisting of three adjacent images accord-
ing to:

�ev;v2 i;jf g ê�θcσj j;P
Iv\It�;;v;t2 i;j;kf g;v�t

ev;th3jê�θfσj;

�
(1)

where Ii represents ith image in the sequential images I, and θc and θf are two given
thresholds. The first condition indicates that the average registration errors of two
images in this group are relatively small, which can avoid the perspective distortion of
this group is great different with the most images. We set θc ¼ 3 by default. The higher
the value of θc is, the smaller the allowable average registration error is and the fewer
the number of large pose-perturbed images in seed groups is. The second condition is
used to avoid that there are great registration errors between two images in this group.
We set θf ¼ 0:5 by default, which can constrain the similarity of the perspective distor-
tion among three adjacent images. The smaller the value of θf is, the higher the
allowable registration error between the three images is. In order to find the images
whose perspective distortion are quite different, images Ik are regarded as seed points
when �ek> êþ θcσj j. Third, the region-growing procedure aims to merge images of the
same perspective distortion as much as possible, which is performed as follows: (1)
Given two images Ii and Ij in a seed group, when ev;t;t2 i;jf g< ê� θfσj j, isolated image Iv is
added into this image group. (2) Classify seed groups into the stable group when there
is no seed point among these groups. If Ii and Ij belong to the stable group, and
ek;t;t2 i;jf g> êþ θcσj j, seed points Ik are labelled as the unstable group, such as I6, I12 in
Figure 3(a). (3) For the remaining unclassified seed points, seed groups, or isolated
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images, such as I20, I24, considering that there are only a few images of great perspective
distortion, we classify them according to the principle of dichotomy. That is to say, when
Ii and Ij belong to the unstable group, and ev;k;k2 i;jf g> êþ θcσj j, image Iv would be divided
into the stable group, such as I24 in Figure 3(a). The final classified topological graph of
the synthetic dataset is shown in Figure 3(a), and the real classification of perspective
distortion is shown in Figure 3(c). The perspective distortion of the images also can be
determined by the images’ poses (if any), machine learning, or manual intervention.

2.1.2. Reference image selection
To make stitching image as natural as possible, the stitching plane should be parallel to
the real plane of the surveyed area. Since the flight plane is generally parallel to the
ground and the images in this paper were captured from approximate planar scenes, the
perspective distortion of the reference image should be small and the optimal reference
image should be selected from the stable group. In general, the stitching procedure
involves cascading a series of relative intermediate images that induce the accumulation
of perspective distortion, especially the unstable-group images. In order to assure that as
few as possible unstable-group images are selected as intermediate images, an undir-
ected weighted topological graph is constructed, where the images are denoted by
nodes and the overlaps between the image pairs are denoted by edges. The weight of
an edge can be set according to the reciprocal of the number of matched features
(Elibol, Gracias, and Garcia 2013b) or the registration error between the image pair (Choe

(a) (b) (c)

Figure 3. An illustration of the weighted topological graph and the reference selection in our
approach: (a) the weighted topological graph applying affine models with auto-selected reference
image I12; (b) the spanning tree of the weighted graph with auto-updated reference image I13; and
(c) the true classified graph referring to the perspective distortion. The grey edges imply the weights
defined in Equation (2)(b), the blue edges indicate the weights defined in Equation (2)(c), and the
bold blue edges imply the weights defined in Equation (2)(d). The red edges indicate the shortest
way from each image to the reference image. The different of solid circles represent the different
sizes of perspective distortion in Figure 3(c), and the corresponding degree represents the angle of
the image with the observation plane.
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et al. 2006b). We set the weights of edges considering the association between the
number of matched features and the registration error, and the weights are defined as

wij ¼

inf; if Ni;j ¼ 0; ðaÞ
1

lnðNi;jþ#Þ ; if Ni;j>0; Ii and Ij 2 S; ðbÞ
1

lnðNi;jþ#Þ þ δ; if Ni;j>0; Ii or Ij 2 U ; ðcÞ
1

lnðNi;jþ#Þ þ 2δ; if Ni;j>0; Ii and Ij 2 U ; ðdÞ

8>>><>>>: (2)

where Ni;j denotes the total number of matches between Ii and Ij, δ is the maximum in
wij
� �

got from Equation (2)(b) and # is a constant for regularization (# ¼ 50 by default).
The final weighted topological graph is shown in Figure 3(a).

The optimal reference image should satisfy the minimal sum of accumulated errors
from all the other images to the reference image (Xia et al. 2017b). In order to do this,
we use the Floyd–Warshall’s all-pairs shortest path algorithm (Floyd 1962b) to select the
optimal reference image on the weighted graph. When the selected reference image
belongs to the unstable group, such as I12 in Figure 3(a), its adjacent node is selected as
the new reference image based on the idea of the shortest path algorithm, which
belongs to the stable group and the weight of which with previous reference image is
least, such as I7 in Figure 3(b). As soon as the optimal reference image is selected, the
minimum spanning tree of the weighted graph can be obtained by choosing the
optimal reference image as the root node and then applying the classical Floyd–
Warshall algorithm.

To demonstrate the validity of the above procedure, a high-resolution image (centre
coordinates are 36�8042

00
N, 114�180

10
00
E), as shown in Figure 4(a), was posted onto the

surface of an approximate planar model in a commercial software named 3D Studio
Max. We then produced a variety of distortion images by setting the principle axis of the
virtual camera with the ground at different angles ranging from 70� to 90�. The stitching
result of Xia et al.’s algorithm (Xia et al. 2017b) is shown in Figure 4(d), which auto-
matically selects I12 as reference image; and the result of our approach is shown in
Figure 4(c,f). For effective comparison, I13 is set as reference image in Xia et al.’s
algorithm and the stitching result are shown in Figure 4(b,e). In terms of this compara-
tive experiment, our proposed approach is more efficient than Xia et al.’s approach and
the spanning tree is also more reasonable.

2.2. Global consistent alignment

Since UAV images in this paper were captured from approximate planar scenes, homo-
graphy model is adopted in global alignment, which transforms global alignment
optimization to a non-linear problem in which the initial solution and the energy
function become two essential components. However, during the process of obtaining
the initial solution, a single transformation model is usually adopted in practical applica-
tions, which produces poor accurate alignment using only affine model or suffers severe
perspective distortion using only homography. Therefore, we creatively adopt a bund-
ling strategy in which different models are used for two groups of images during the
initial alignment, and the models are refined with a global energy function considering
an anti-perspective function.
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2.2.1. Initial alignment by bundling constraint
Based on the optimal reference image, a robust initial solution for the global refinement
process is possible by warping other images to the reference plane group by group. But
the unstable-group images would cause several accumulative error in the results due to
the model’s inaccuracy. In our approach, images Iu ðIu 2 UÞ are not simply dropped, but
instead are bundled to adjacent bundled images Is ðIs 2 SÞ which has the most overlap

with itself to reconstruct new images Îs, such as the reddish polygons in Figure 5(c). First,
according to the spanning tree constructed in Section 2.1.2, its parent-node image is
chosen as the bundled image, and the sibling node images belonging to the stable
group are candidates when the parent-node image belongs to the unstable group.
Then, homography Hs;u from image Iu to image Isis calculated, and new overlapping

relations bxks;jn o
with adjacent image Ij are reconstructed by adding matching points

xku;j
n o

to adjacent relationship xks;j
n o

as

Figure 4. The comparison results of the synthetic dataset (Syntheticdata-25) about the reference
image selection: (a) the original high-resolution image; (b) the topological graph generated by Xia
et al.’s approach with manually selected reference image I13; (c) the topological graph generated by
our approach with auto-selected reference image I13; (d) the result aligned by Xia et al.’s approach
with auto-selected reference image I12; (e) the alignment result corresponding to Figure 4(b,f)
and the alignment result corresponding to Figure 4(c).

3126 R. XIE ET AL.



bxks;j ¼ fxks;jgIs2S [ xku;jHs;u

n o
Iu2U

; (3)

where Hi is the 3� 3 homography transformation matrix, x ¼ ½x; y;w�T denotes the

homogeneous coordinate of a feature, and xki;j denotes 2D coordinate of kth matched

feature in Ii corresponding to kth matched feature xkj;i in Ij.
For example, image I01 is bound to image I07, as shown in Figure 5(a,b); therefore,

matching pairs x01;02 between image I01 and image I02 are added to matching pairs x07;02
and matching pairs x01;05 are added to matching pairs x07;05. Of course, matching pairs
x01;05 would generate new matching relations x07;05 that are shown as the dotted line in
Figure 5(c). Finally, based on the reconstructed relations, affine models As are solved by
minimizing the cost function as follows:

EðAÞ ¼
X

Is; Ij 2 S

XNs;j

k¼1

k $ðAsbxks;jÞ �$ðAjbxkj;sÞk2; (4)

where Ns;j denotes the total number of matches between Ii and Ij, As is the 3� 3 affine

transformation matrix, and $ðxÞ ¼ ½x=w; y=w�T represents the transformation of the
homogeneous coordinate of a feature into the non-homogeneous coordinate. As linear
equations, Equation (4) can be solved easily by the Singular Value Decomposition
method.

2.2.2. Global optimization using anti-perspective function
Although the above initial alignment makes the stitching result robust as far as per-
spective distortion, several registration errors likely exist among the images since these
deviations have never been processed in a global way. In this section, based on the
primitive matching relationships, we align all the images in a unified energy framework
which allows the transition from affine model to homography model under reasonable

Figure 5. Comparison of initial solution using bundling strategy or not: (a,b) the result of initial
alignment without using bundling strategy; (c,d) the result aligned by our approach using bundling
strategy. The grey numbers in Figure 5(c) represent the number of merged overlaps and the dotted
lines stand for newly generated overlaps. Considering simplicity, the reddish polygons indicate new
images not including new overlaps.
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constraints to reach an optimal balance between the alignment precision and the global
consistency. The energy is composed of two terms: one minimizes the sum of the
feature registration errors between images and the other suppresses the accumulation
of perspective distortions. Let I ¼ fIigni¼1 be the primitive image set and the affine
models A ¼ fAigni¼1 of all images as resolved above, which are adopted as the initial
solution of global optimization, with the first energy term defined as

EdðHÞ ¼
X
Ip;Iq2I

XNp;q

k¼1

k $ðHpxkp;qÞ �$ðHqxkq;pÞk2; (5)

where H ¼ fHigni¼1 represents the unknown homographies with respect to the reference
plane.

Another optimization objective is to maintain global consistency by suppressing
severe perspective distortion of stable-group images Is and giving unstable-group
images Iu more freedom to adjust during the homography (Is and Iu defined in
Section 2.2.1). First, the optimal homographic transformation should be close to the
initially estimated models; therefore, the deviations between the optimal homographic
transformations and the initially estimated transformations are set as a regularization
term:

E1r ðHÞ ¼
X
Ip;Iq2I

XNp;q

k¼1

k $ðHpxkp;qÞ � bApxkp;qk2þ k $ðHqxkq;pÞ � bAqxkq;pk2
� �

; (6)

where bAp (so does bAq) represents the image’s warping model to the projection plane
and is calculated as

bAp ¼ fAp; if Ip 2 S;
As$ðHpÞ; if Ip 2 U ;

(7)

where image Is represents the bundled image of Ip (or Iq). $ðxÞ ¼ ½x=w; y=w�T represents
the transformation of the homogeneous coordinate of a feature into the non-homo-
geneous coordinate. Second, the plane of images Is is nearly parallel to the real projec-
tion plane, and images Is should not have severe perspective distortion during the
global refinement. Therefore, we introduce the mathematical distortion coefficients for
images Is as a regularization term:

E2r ðHÞ ¼
X
It2I

Nt

4

XC4

k¼1

log10 δ1m � 1
� �2 þ ð 1

δ1m
� 1Þ

2

þ δ2m � 1
� �2 þ ð 1

δ2m
� 1Þ

2
 !( )

; (8)

where δ1m and δ2m represent the maximum and minimum local stretches of point xk
defined by Koo, Kim, and Cho (2009b), Nt represents the total number of matching
points with all the adjacent images, and C4 indicates a set containing image’s four

corners. If the two values δ1m and δ2m are both more close to 1, the transformed images
look more like their source images (also in size). Specifically, the purpose of log10 �ð Þ is to
normalize the function value that represents the perspective distortion of a point, and
the average distortions of the image’s four corners are used to displace the image’s
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distortions for simplifying the calculation. The regularization terms defined in Equations
(6) and (8) can be linearly combined to define the final regularization function as

ErðHÞ ¼ E1r ðHÞ þ γE2r ðHÞ; (9)

where parameter γ denotes the weight coefficient for balancing regularity terms E1r ðHÞ
and E2r ðHÞ. Because the term E2r ðHÞ represents the amount of average stretches of all
images, the transformed images look like their source images in size when their value
is approximate to zero. For unstable-group images Iu, we should give the models more
DoFs to adjust to reduce the feature registration errors and set parameter γ as 0. In order
to regard the stable-group images Is as the main constraint plane, parameter γ is set as
0.15 for images Is by default. So far, based on the energy function defined in Equations
(5) and (9), the final energy function can be defined as follows:

EðHÞ ¼ EdðHÞ þ λErðHÞ; (10)

where parameter λ denotes the weight coefficient for balancing data term EdðHÞ and
regularity term ErðHÞ. The two values of EdðHÞ and ErðHÞ reflect the alignment errors and
the perspective distortion, respectively. The perspective distortion usually magnifies
when the value of EdðHÞ decrease, and the alignment precision often increase if the
value of ErðHÞ diminishes. Theoretically, a smaller value of λ enhances the precision of
local alignment while reducing the global consistency. Considering that the constraint of
the regularity term is not strict, we set λ as 0.05 to improve the global consistency in all
the experiments. The above optimization can be solved by the Levenberg-Marquardt
(LM) algorithm (Li, Deren, and Fan 2012b).

3. Experimental results

In this section, three typical datasets, including one synthetic dataset and two real
datasets, are used to evaluate our proposed approach. The comparative experiments
with the algorithm proposed by Xia et al. (2017b) dealing with approximate planar
mosaicking and with the commercial software ”PTGui” (PTGui is available at http://
www.ptgui.com/.) are performed, which are evaluated both qualitatively and quanti-
tatively. Because the aim of comparative experiments is comparing the alignment
results only, the following seamline detection and tonal correction are skipped in
PTGui. The qualitative evaluation is based on the global consistency, which is imple-
mented by visual observation; and the quantitative evaluation is based on the
alignment precision, which is evaluated based on the registration errors among the
sequential images. The comprehensive results demonstrate the superiority of our
approach.

3.1. Dataset description

The first real aerial dataset was captured at an average flight height of 780 m over an
urban area in Anyang city, Henan Province, China. The study area’s average elevation is
76 m, and the area is 8 km in length and 1.8 km in width (centre coordinates are

36�8010
00
N, 114�200

36
00
E), as shown in Figure 6(a). The average flight height of the
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second real UAV dataset was 370 m while observing the Songnen Plain of Songyuan
City, Jilin Province, China. The average elevation of the study area is 165 m, and it has an
area of 6.56 km2 (4.44 km in length and 1.46 km in width) (centre coordinates are

45�6037
00
N, 125�140

900 E), as shown in Figure 6(b).

3.2. Synthetic dataset

To test the robustness of our approach, a high-resolution aerial image with the size of
9336� 6000 pixels was selected from the first real aerial dataset, as shown in Figure 7(a)

(centre coordinates are 36�8023
00
N, 114�210

39
00
E). It was posted onto the surface of an

approximate planar model in commercial software 3D Studio Max. Then, we produced
diverse distortion images by setting the angle between the principle axis of the virtual
camera and the model plane at different degrees ranging from 75� to 90�.

The stitching results using PTGui, Xia et al.’s approach, and our approach are shown in
Figure 7(e–h), and the results of PTGui and our approach both show noticeable global
consistency with original image about the visual effects. For the reference image
selection, unstable-group image I24 is selected automatically in Xia et al.’s approach,
which results in the deviation between projection plane with real ground, as shown in
Figure 7(b,f). On the contrary, stable-group image I23 is selected as the optimal reference
image in our approach, as shown in Figure 7(d,h), and it is also selected as the reference
image in Xia et al.'s approach to make the comparison more convincing, as shown in
Figure 7(c,g). In terms of visual effects, the stitching result applying our approach
obtains better global consistency compared to the result from Xia et al.'s approach,
whose top right-hand corner is overstretched severely and left bottom part is com-
pressed. Although both grouping alignment and global optimization are applied, there
are still severe perspective distortions in the result from Xia et al.’s approach because the
size of the image’s distortion is not considered when searching for an optimal projecting
path for each image, which results in cascading many large distorted images during
projection procedure. Besides, we should notice the image I12, as shown in Figure 7(d,h),

(b)(a)

Figure 6. Location of the study area and the range of datasets marked with blue rectangles: (a) the
aerial dataset, (b) the UAV dataset.
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and its adjacent images were captured from hill area, and the poses of these images are
stable which range from 0� to 5�. However, the image I12 is divided into unstable-group
because there are large registration errors with its surrounding stable-group images.
Compared with the stitching result applying Xia et al.’s approach, the image I12 is not
selected as the intermediate image during projection procedure in our approach which
avoids the accumulation of perspective distortion, as shown in Figure 7(b–d, f–h). When
UAV images captured from approximate planar scenes and when there are a few large
pose-perturbed images, the perspective distortion caused by hill area is similar to the
perspective distortion caused by large pose perturbation, and our approach can also
recognize it.

As a quantitative evaluation, the numerical results shown in Table 1 (Syntheticdata-
49) demonstrate that the alignment precision greatly improve after the application of
both Xia et al.’s approach and ours, and the alignment precision of PTGui’s result is the
worst of the three approaches although the global consistency of PTGui’s result is as

Figure 7. The experimental results on the synthetic dataset (Syntheticdata-49): (a) the original high-
resolution image; (b, f) the topological graph and the stitching result via Xia et al.’s approach with
auto-selected reference image I24 marked with a red rectangle; (c, g) the topological graph and the
stitching result applying Xia et al.’s approach with manually selected reference image I23; (d, h) the
topological graph and the stitching result via our approach with auto-selected reference image I23;
and (e) the stitching result with the commercial software PTGui. The reference image of each mosaic
is marked with a red rectangle. The blue rectangle in Figure 7(h) stands for hill area.
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good as that of ours. Furthermore, our approach achieves worse result than Xia et al.’s
approach after conducting the initial alignment. After applying global alignment, our
approach also produces worse result compared with Xia et al.’s approach about align-
ment precision because the anti-perspective function in global optimization improves
the global consistency of our result but simultaneously reduces its alignment precision.
Therefore, considering the global consistency, our approach’s result is approximate with
PTGui’s result, and the alignment precision is as good as Xia et al.’s approach
simultaneously.

3.3. Real datasets

To evaluate our proposed approach on differently pose-perturbed datasets, we
selected an aerial image set with small pose-perturbation, and a UAV image set
with large pose-perturbation. The first real aerial dataset was composed of 93 images
belonging to three strips, and the forwarding overlap rate was about 60%. The
original images were downsampled to 1000� 642 pixels in our experiments. The
stitching results corresponding to Xia et al.’s approach, ours, and PTGui are illustrated
in Figure 8(a,b, and c), respectively. Because the principal axis of the aerial cameras is
approximately perpendicular to the ground and the perspective distortion of this
image dataset is small, the image classification automatically divides most of the
images into the stable group, and only 12 images are divided into the unstable
group. For this reason, affine model is used for most images during initial alignment
in our approach. The initial alignment result and global optimization result of our
approach are similar to Xia et al.’s results for visual effects and alignment precision, as
shown in Figure 8 and in Table 1 (Urbanarea).

The perspective distortion of this image set is small, and the visual effects of these
stitching results are similar. Only the perspective distortion of the PTGui’s result is
slightly obvious, in which slight flexion of the right part can be found, as shown in
Figure 8(c). The numerical comparative analysis for this dataset is shown in Table 1
(Urbanarea), from which the Xia et al.’s approach and ours have similar aligning accuracy
when the perspective distortions of all the images are small. Meanwhile, we can find that
the aligning accuracy of Xia et al.’s approach and ours is superior than PTGui’s, and some
typical regions acquired from the result using our approach and PTGui’s result are
enlarged, as shown in Figure 8(d).

For more obvious evidence, the second real dataset, which was composed of 295
images, was captured by a UAV with aerial cameras with a downsampled size of
900� 600. The forwarding overlapping rate was about 45%. In order to guarantee
that the images captured by UAV are available, general practice is to obtain data

Table 1. Quantitative comparison on stitching results obtained through different methods by using
the root-mean-square (RMS) errors. (IA: initial alignment; GR: global refinement; Unit: pixel.).

Syntheticdata-25 Syntheticdata-49 Urbanarea Songnenplain

Method RMS (IA) RMS (GR) RMS (IA) RMS (GR) RMS (IA) RMS (GR) RMS (IA) RMS (GR)

Xia et al.’s method 3.7871 2.1344 3.3086 1.1376 2.8914 1.3044 6.3411 3.4303
PTGui – 6.6009 – 6.0529 – 4.7356 – 6.9285
Our approach 1.5340 1.5390 4.1993 1.3052 3.1412 1.2323 6.8284 3.6116
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using the UAV on a windless day as much as possible. However, the observed scene of
this dataset is located in a wind power farm where there is wind all year round, which
make the pose of the UAV change greatly and the original images present severe
perspective distortion. The corresponding results of Xia et al.’s approach, PTGui, and
ours are illustrated in Figure 9(a,b, and c), respectively. Some typical regions acquired
from PTGui’s result and our result are enlarged, as shown in Figure 9(d).

Compared to Xia et al.’s approach, PTGui and our approach achieve better global
consistency. For example, the bottom left part and top right part of Xia et al.'s stitching
result are severely compressed and the bottom right part is overstretched, as shown in

Figure 8. The experimental results on the first real dataset (Urbanarea): (a) the stitching result via
Xia et al.’s approach XiaM2017 with auto-selected reference image I45 marked with a red rectangular
box; (b) the stitching result using our approach with auto-selected reference image I45 marked with
a red rectangular box; (c) the stitching result with PTGui; and (d) several enlarged regions grabbed
from the result using our approach and PTGui’s result shown in Figure 8(b,c).
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Figure 9. The stitching results of the second real dataset (Songnenplain, 295 images): (a) stitching
result via Xia et al.’s approach with manually selected reference image I117 marked with a red
rectangle; (b) the stitching result applying PTGui; (c) stitching result using our approach with auto-
selected reference image I117; and (d) several enlarged local regions from two result in Figure 9(b,c).
The green boxes indicate an image presenting a different perspective distortion after applying Xia
et al.’s approach and ours.
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Figure 9(a,b). Although Xia et al.’s approach manages to construct a spanning tree with less
accumulated error with an optimal reference image, the edge weights of the topological
graph are set based on only the number of matched features and the registration errors,
which ignores the effect of the perspective distortion of the images themselves and causes
the spanning tree cascading many distorted images in the middle of transferring proce-
dure. On the other hand, the mosaicked image of our approach produces less perspective
distortion than Xia et al.’s approach, as shown in Figure 9(c). The distorted images aren't
selected as intermediate images through the image classification. Furthermore, during
initial alignment, the unstable-group images are bundled to the stable-group images via
homographies that have more DoFs, which can provide a more accurate initial solution.

As noted, the image marked with a green box presents severe perspective distortion in
Figure 9 because there are only a few matching feature points in the low contrast and poor
texture image with other images, and feature points are also unevenly distributed.
However, the anti-perspective function in global optimization makes our approach more
robust to Xia et al.’s approach. The anti-perspective function ensures that the transformed
images are close to the original images after applying homographic transformation.

Compared to PTGui, the alignment precision of Xia et al.’s approach and our
approach is better. From the whole alignment errors, especially the enlarged typical
regions, as shown in Figure 9(c), we observed that the alignment precision of PTGui’s
result is worse than ours on visual effects. To demonstrate the superiority of our
approach, the quantitative evaluation of the three approaches is performed based on
the registration errors of the initial alignment and the final global alignment, as shown in
Table 1 (Songnenplain). The results clearly show that the precision of our approach is
very similar to that of Xia et al.’s approach and the global consistency of our approach
outperforms Xia et al.’s approach. The global consistency of our approach is similar to
PTGui’s; meanwhile, the precision of our approach is superior to PTGui’s.

4. Conclusions

In this paper, a novel robust stitching framework for UAV image mosaicking without
pose parameters is proposed. The key idea behind this framework lies in an effective
projection plane selection strategy, which can resist the perspective distortion from
possible existing pose-perturbed images. First, in order to construct the projection plane
efficiently, we divide the sequential images into two groups, the stable group and the
unstable group; and we select an optimal reference image through a weighted classi-
fication graph, which can prevent the reference image from being selected from the
unstable group and maintain a global minimum accumulated registration error. Then, to
achieve a better balance between global consistency and alignment precision, we
propose an effective bundling strategy in which each unstable-group image is locally
attached to a stable-group image via a homography, and the alignment parameters of
all the stable-group images are solved with affine models. Finally, a global optimization
using an anti-perspective function is employed to refine the model parameters of both
groups. Our experimental results on several representative synthetic and real image
datasets demonstrate that our proposed approach is superior to the state-of-the-art
algorithm in terms of effectiveness and robustness. However, there are also some
aspects of our framework would benefit from future work. The image classification of
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the perspective distortion cannot be divided only according to the information of the
images themselves, and the classified strategy is not robust because the parameters are
manually set, which means that the global consistency cannot be improved much. We
plan to further investigate all of these problems in our future work.
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